New Developments in Secondary Emission Calorimeters

Si Xie

California Institute of Technology

CPAD Instrumentation Frontier Meeting10/06/2015

Secondary Emission Calorimeters

- Intrinsically Radiation Hard
 - Secondary emission is radiation hard
 - No photocathode, no light transport
- Intrinsically Fast (~1ns signal formation)
 - Time scale from secondary emission process
 - No extra time scales from atomic decays (eg. scintillation)
- Both features are a huge plus for future colliders which require increased instantaneous luminosity

I will describe work done with Fermilab (A. Ronzhin, S. Los) and Caltech (A. Apresyan, C. Pena, F. Presutti, M. Spiropulu) collaborators.

Additional Capabilities

- We investigated extra capabilities of secondary emission calorimeters with important implications for future detectors:
 - Electromagnetic Shower Position
 - Precision Timing
- These aspects are studied with a secondary emission calorimeter using multi-channel plates (MCP) as the

active element

MCP as active element of a shower max detector

MCP as active element of a shower max detector

Photonis XP85012 MCP

Pixelated anodes of size: 6mmx6mm

 Central 4x4 pixels ganged together and read out as a single channel

Pure secondary emission signals

Examples of secondary emission signals

- 8 GeV electron beam
- 4 X₀ of tungsten absorber

Amplitude Distribution

Time of Flight wrt ref detector

Performance

- Achieve ~100% detection efficiency for EM showers
- Achieve ~50ps time resolution everywhere in the EM shower

Shower Position Studies with Pixelated Readout

Testbeam Setup

Caltech

Shower Position Reconstruction

Use a simple energy-weighted position reconstruction

Three example beam positions

We observe shower positions are well reconstructed on average

Position Resolution

- Electron beam spot is rather large : ~cm size
- We constrain the beam profile to a 2mm x 2mm square using a small scintillator trigger
- But still rather difficult to measure position resolution below the mm level.
- Ideally should use a reference tracking system with sub-mm precision, but was not available for our tests

Caltech

Position Resolution

- Model the observed shower center position as a convolution of the square beam profile with a gaussian
- Fit to the data to extract the resolution (width of gaussian)

- Obtain position resolution just under 1mm.
- Recall that the pixel was a 6mm square

Time Resolution

- Time resolution can be measured with respect to a reference MCP detector (Photek 240)
 - Reference detector was independently measured to have resolution better than 10ps for EM showers
- Shower time-stamp reconstructed using simple charge / energy weighting

$$t = rac{\sum_{i \in ext{pixels}} Q_i t_i}{\sum_{i \in ext{pixels}} Q_i}$$

Time Resolution

- Using the largest charge pixel yields time resolution ~80ps
- Using the energy-weighted time reconstruction yields resolution around 50ps
 - Similar to result we obtained when pixel channels are ganged together

Charge dependence of time measurement

- We observe some dependence of time stamp on the measured charge
- Calibrate this out, and see the impact on time resolution

Caltech

Charge dependence of time measurement

- We observe some dependence of time stamp on the measured charge
- Calibrate this out, and see the impact on time resolution

 After corrections in each pixel, we improve the time resolution to around 35-40ps

Time Resolution vs Number of Pixels

- Study time resolution as a function of how many pixels are included in the reconstruction
- Observe consistency with 1/ sqrt(N) behavior

 additional information in transverse direction helps if there's still more information about the EM shower there

Summary

- Secondary emission calorimeters are important tools for future collider experiments
 - Radiation resistant & fast
- We studied important aspects of SEC's using an MCPbased prototype with electron beams:
 - Achieves near 100% efficiency for EM showers
 - Timing capability around 50ps & can be potentially improved to 35ps with more detailed calibrations
 - With coarse pixelated readout, achieved position resolution better than 1mm (1/6 of pixel size)

Backups

Caltech

Apply a reverse bias voltage to the photocathode

- A +9 V battery used to apply a voltage across photocathode to prevent photo-electrons from entering MCP
- Laser measurements verify that above +1.5 V, no more photo-electron signals are made

- Tungsten Moliere radius: 0.93cm
- Tungsten radiation length: 0.35cm